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Here is the plan for our three sessions:

• How can we measure randomness in deterministic sequences?

• From deterministic sequences to random point processes

• Case study 1: Hitting and return times for linear flows on flat tori

• Case study 2: Fractional parts of
√
n

• [Case study 3: Directions in hyperbolic lattices]
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How can we measure randomness in deterministic sequences
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Gap statistics

• Consider ordered sequence of real numbers

0 ≤ a1 ≤ a2 ≤ · · · → ∞

of density one, i.e.,

lim
T→∞

N [0, T ]

T
= 1, N [0, T ] := #{n | an ≤ T}.

This ensures the average gap between elements in this sequence is 1.
• Gap distribution

PT [a, b] =
#{n ≤ N [0, T ] | an+1 − an ∈ [a, b]}

N [0, T ]

• The counting measure PT defines a probability measure on R≥0. Does PT
converge (weakly) to some probability measure P as T →∞? I.e.,

lim
T→∞

PT [a, b] = P [a, b] ∀ 0 ≤ a < b <∞
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Example: Integers

For

an = n

we have

PT [a, b] =
#{n ≤ N [0, T ] | 1 ∈ [a, b]}

N [0, T ]
= δ1[a, b]

So PT = δ1 = P (the Dirac mass at 1).
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Example: Quadratic forms at integer lattice points I∗

• Let (an)n given by the set{
π(αm2 + n2)

4
√
α

∣∣∣∣∣ m,n ∈ Z2
≥0

}

• Note (an)n has density one
(check!)
• We have no proof PT

w−→ P

with P the exponential distribu-
tion for any α
• For α ∈ Q one can show
PT

w−→ δ0

Note: The exponential distribution is the gap distribution (“waiting times”) of a
Poisson point process of intensity one

∗These examples are already discussed M. Berry and M. Taylor, Proc. Roy. Soc 1977 who where
interested in energy level statistics in the context of quantum chaos
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Example: Quadratic forms at integer lattice points II

The previous example was a positive definite quadratic form. How about the
following discriminant-zero case:

• Let (an)n given by the set{
(αm+ n)2

2α

∣∣∣∣∣ (m,n) ∈ Z2
≥0

}

• Note (an)n has density one
(check!)
• One can show that PT does

not converge for α /∈ Q
(only along subsequences), and
understand the distribution in
terms of the “three gap theo-
rem”

Exercise 1: Show that for α ∈ Q we have PT
w−→ δ0.
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Rescaling

Suppose the sequence 0 ≤ a1 ≤ a2 ≤ · · · → ∞ does not have density one, but
satisfies the more general

lim
T→∞

N [0, T ]

L(T )
= 1, N [0, T ] := #{n | an ≤ T}.

with the integrated density L(T ) = ν[0, T ] =
∫ T

0
ν(dt) and the Borel mea-

sure ν is absolutely continuous with respect to Lebesgue measure dt.

Then the rescaled sequence bn = L(an) has density one and it is more nat-
ural consider the gap distribution for this rescaled sequence than the “raw” gap
distribution the original sequence.

Note N [0, T ] =
∑
n
δan[0, T ] =

∫ T
0

∑
n
δan(dt) so we cannot take L(T ) =

N [0, T ].

Question: What would the gap distribution be for the
choice L(T ) = N [0, T ]?
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Example: The Riemann zeros

• Let an be the imaginary part of
the nth Riemann zero on the
critical line (in the upper half
plane).
• Then an has a density given by
L(T ) = T

2π log T
2πe.

• Consider gap distribution of
the rescaled zeros bn =
an
2π log an

2πe.
• We have no proof PT → P with
P given by the limiting cap distri-
bution for large unitary random
matrices.
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General fine-scale statistics

• Consider

0 ≤ a1 ≤ a2 ≤ · · · → ∞

of density one (as before).
• Fix σ a locally finite Borel measure on R≥0 so that σ[0,∞) =∞.
• For D ⊂ R a compact interval, set N(D) = #{n | an ∈ D} and denote by
t+D its translation by t.
• For k ∈ Z≥0

Eσ([0, T ], D, k) =
σ{t ∈ [0, T ] | N [t+D] = k}

σ[0, T ]

is the probability that, for t random in [0, T ] (w.r.t. σ), the interval t + D

contains k contains elements of (an)n
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Example: Gap and nearest distance statistics

• Take D = [0, s], k = 0, σ =
∞∑
n=1

δan (so A = 1 by assumption); then

Eσ([0, T ], [0, s],0) =
#{n ≤ N [0, T ] | N [an, an + s] = 0}

N [0, T ]
= PT [0, s]

We have recovered the gap distribution of (an)n!

• If instead we take D = [−s, s], then

Eσ([0, T ], [−s, s],0) =
#{n ≤ N [0, T ] | N [an − s, an + s] = 0}

N [0, T ]

which is the nearest distance distribution of (an)n.
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Example: Gap and void statistics

• For σ = Leb (the Lebesgue measure normalised so that Leb[0,1] = 1)
then

ELeb([0, T ], D,0) =
Leb{t ∈ [0, T ] | N [t+D] = 0}

T

is called the void distribution of (an)n.

Exercise 2: Show that
for T > 0 and s ∈ R>0 \ {discont.} we have

N(T )
T PT [s,∞) = −

d

ds
ELeb([0, T ], [0, s],0)

− 1
T 1(a1 > s)− 1

T 1(aN(T ) > T − s)

{discont.} = {a1} ∪ {an+1 − an | n ≤ N(T )− 1} ∪ {T − aN(T )}

Hint: Work out ELeb([an, an+1), [0, s],0).
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Example: Pigeon hole statistics

• Take D = [0, s) (e.g. s = 1), k ∈ Z≥0, σ =
∞∑
n=0

δns (so A = 1/s); then

Eσ([0, T ], [0, s], k) =
#{0 ≤ n ≤ T/s | N [ns, (n+ 1)s) = k}

bT/sc+ 1

i.e. the proportion of bins [0, s], [s,2s], [2s,3s], . . . , [sbT/sc, s(bT/sc+ 1)] that
contain exactly k points
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Example: Quadratic forms at integer lattice points

• Let (an)n given by the set{
π(αm2 + n2)

4
√
α

∣∣∣∣∣ m,n ∈ Z2
≥0

}

• In the experiment we have
taken the pigeon hole stats
Eσ([0, T ], [0, s], k) with bin
width s = 3.

• We expect lim
T→∞

Eσ([0, T ], [0, s], k) =
sk

k!
e−s (the Poisson distribution), but

no proof
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Two-point correlations

• The above local statistics are often too difficult to handle analytically; two-
point statistics are more tractable

• Pair correlation measure

RT [a, b] =
#{(m,n) | n ≤ N [0, T ], m 6= n, am − an ∈ [a, b]}

N [0, T ]

• Compare with gap distribution

PT [a, b] =
#{n ≤ N [0, T ] | an+1 − an ∈ [a, b]}

N [0, T ]

• For positive definite quadratic forms, under explicit Diophantine conditions on
the coefficients, one can prove∗ RT [a, b]→ b− a

∗A. Eskin, G. Margulis, S. Mozes, Annals Math 2005
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Example: Riemann zeros

A. M. Odlyzko, Math. Comp. 1987

best result to-date (and a beautiful paper) Z. Rudnick, P. Sarnak, Duke. Math. J. 1996
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From deterministic sequences to random point processes
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Randomization

• Consider

0 ≤ a1 ≤ a2 ≤ · · · → ∞

of density one (as before).
• Fix σ a locally finite Borel measure on R≥0 so that σ[0,∞) =∞.
• Let t be a random variable distributed on [0, T ] with respect to σ; that is t is

defined by P(t ∈ B) =
σ(B ∩ [0, T ])

[0, T ]
for any Borel set B ⊂ R.

• Define the random point process (=a random counting measure on R)

ξT =
∞∑
n=1

δan−t

• Note: Eσ([0, T ], D, k) = P(ξTD = k).

• Is there a limiting point process ξT
d−→ ξ as T →∞?
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Point processes∗

• M(R) the space of locally finite Borel measures on R, equipped with the
vague topology†

• N (R) ⊂ M(R) the closed subset of integer-valued measures, i.e., the set
of ζ such that ζB ∈ Z ∪ {∞} for any Borel set B
• A point process on R is a random measure in N (R)

• For ζ ∈ N (R), we can write ζ =
∑
j

δτj(ζ) where τj : N (R)→ R.

• Use convention τj ≤ τj+1, and τ0 ≤ 0 < τ1 if there are τj ≤ 0.
• ζ is simple if sup

t
ζ{t} ≤ 1 a.s

• The intensity measure of ζ is defined as Eζ.

∗For general background see O. Kallenberg, Foundations of Modern Probability, Springer 2002
†The vague topology is the smallest topology such that the function f̂ :M(Rd)→ R, µ 7→ µf is
continuous for every f ∈ Cc(Rd).

21



Example: Poisson point processes

• Fix σ ∈M(R)

• The Poisson point process with intensity measure σ is defined by

P(ζBi = ki, i = 1, . . . , r) =
r∏

i=1

(σBi)
ki

ki!
e−σBi

for all bounded and pairwise disjoint Borel sets Bi, integers ki ≥ 0, r > 0.
• ζ is called homogeneous Poisson process if σ is Lebesgue measure.

Exercise 3: Show that σ is indeed the intensity measure
of the Poisson point process ζ, i.e. verify Eζ = σ.
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Stationarity

• For u ∈ R, define the shift operator θu onM(R) by θuζB = ζ(B + u) for
every Borel set B ⊂ R.
• If ζ =

∑
j

δτj(ζ), we have θuζ =
∑
j

δτj(ζ)−u,

• A random ζ ∈M(R) is stationary if θuζ d
= ζ for all u ∈ R.

• The intensity measure of a stationary random measure ζ is Eζ = IζLeb,

where the intensity is given by Iζ =
Eζ(0, R]

R
, which, by stationarity, is

independent of the choice of R > 0.

Exercise 4: Show that a homogeneous Poisson point
process is stationary.
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Example: Hitting times for flows∗

• Consider the topological flow ϕt : X → X where (X, ν) is a probability
space and ν invariant under ϕt.
• Choose a measurable section Y ⊂ X that is transversal to the flow, i.e.,

there is ε > 0 such that ϕtY ∩ Y = ∅ for −ε < t < ε.
• For x ∈ X, let (tj(x))j∈Z be the sequence of hitting times (forward and

backward in time) given by the ordered point set {t ∈ R | ϕt(x) ∈ Y }.
• For x random, ξ =

∑
j

δtj(x) defines a simple random point process.

Exercise 5: Show that, if x is distributed according to the
invariant measure ν, then ξ is a stationary point process.

∗Main reference for this section: J. Marklof, Nonlinearity 2019
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Example: Hitting times for flows

• Let S =
⋃
t∈R

ϕt(∂Y ) be the set of all x that will hit the boundary of Y at least

once.

Theorem 1: The map

ι : X →M(R), x 7→
∑
j

δtj(x)

is continuous on X \ S.

Proof:

• We need to show that, for every f ∈ Cc(R), xj → x in X implies ι(xn)f →
ι(x)f , i.e.

∑
j

f(tj(xn))→
∑
j

f(tj(x)).

• By the transversality of the section, we have tj+1(x)−tj(x) ≥ ε for all j ∈ Z
and x ∈ X. Hence the above sums have at most K terms, where K only
depends on the support of f , not on j, xn or x.
• It is therefore sufficient to show f(tj(xn))→ f(tj(x)) for each fixed j. This

follows from the continuity of f and the continuity of ϕt.
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Example: Hitting times for flows

• Fix x0 and define our deterministic sequence of hitting times by an = tn(x0),
n = 1,2,3. . . .

• Let t be uniformly distributed in [0, T ], and x random with distribution ν; set

ξT =
∞∑
n=1

δan−t, ξ =
∑
j∈Z

δtj(x).

• The following asserts that the sequence of hitting times converges to a lim-
iting point process (and so in particular yields the convergence of the void
statistics):

Theorem 2: Let (ϕt, ν) be ergodic and assume

ν

( ⋃
−ε≤t≤ε

ϕt(∂Y )

)
= 0. Then, for ν-a.e. x0 ∈ X,

ξT
d−→ ξ.

as T →∞.

26



Example: Hitting times for flows

Proof:

• Define the probability measure νT,x0
on X by νTf =

1

T

∫ T
0
f(ϕtx0)dt for

f ∈ C(X)
• By the Birkhoff ergodic theorem, for ν-a.e. x0

νT,x0

w−→ ν

which in turn can be written in terms of the random variables t ∈ [0, T ] and
x ∈ X as

ϕtx0
d−→ x.

• The measure-zero assumption on the boundary implies νS = 0 (as S is a
countable union of measure-zero sets), hence the continuous mapping theo-
rem implies in view of Theorem 1

ι(ϕtx0)
d−→ ι(x).

• Complete proof by recalling ι(ϕtx0) = ξT and ι(x) = ξ.

27



Example: Hitting times for flows

Exercise 6: State and prove the analogue of Theorem 2
for the pigeon hole statistics, assuming now that (ϕ, ν)

be ergodic. (Here ϕ = ϕ1 is the time-one map of the
flow ϕt.)
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Palm distribution for a stationary random measure

• ξ ∈ M(R) a stationary random measure, B ⊂ R is a given Borel set with
EξB > 0.

• The Palm distribution Qξ corresponding to ξ is defined by

Qξf =
1

EξB
E
∫
B
f(θuξ) ξ(du),

with f : M(R) → R≥0 measurable. Since ξ is stationary this definition is
independent of the choice of B.

• The Palm distribution Qξ defines a new random measure η ∈ M(R) via
Ef(η) = Qξf .

• This definition can be extended to non-stationary random measures ξ.
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Palm distribution for stationary point processes

• If ξ is a stationary point process, we can write ξ =
∑
j

δτj(ξ), and so

Ef(η) =
1

IξLebB
E
∑
j

1(τj(ξ) ∈ B)f

(∑
i

δτi(ξ)−τj(ξ)

)
.

• This shows that η is a point process and furthermore that, if ξ is a simple
point process, then η is a simple point process and η{0} = 1 a.s.
• The stationarity of ξ implies that η is cycle-stationary; that is η =

∑
i

δτi(η)

has the same distribution as the point process θτj(η)η =
∑
i

δτi(η)−τj(η) for

any j.
• The intensity measure of a Palm distributed ζ is in fact the pair correlation

measure

Eη =
1

IξLebB
E
∑
i,j

1(τj(ξ) ∈ B)δτi(ξ)−τj(ξ)

(up to the additional δ0 from i = j)
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Example: Poisson point processes

Exercise 7: Show that if ξ is a homogeneous Poisson
process with intensity Iξ, then η d

= δ0 + ξ.

• This relation is in fact unique to the Poisson process (Slivnyak’s theorem): If
ξ is a stationary process on R and δ0 + ξ is distributed according to Qξ, then
ξ is a homogeneous Poisson process.
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Example: Return times for flows

• As above, consider the topological flow ϕt : X → X where (X, ν) is a
probability space and ν invariant under ϕt.
• Choose a section Y ⊂ X that is transversal to the flow, and denote by µ the

invariant measure on for the return map
• For x ∈ X, let (tj(x))j∈Z be the sequence of hitting times
• In the special case x ∈ Y , we call (tj(x))j∈Z be the sequence of return

times
• For x ∈ X random with distribution ν and y ∈ Y random with distribution µ,

set

ξ =
∑
j

δtj(x), η =
∑
j

δtj(y).

• One can show that η is distributed according to the Palm distribution Qξ
of ξ.∗

∗J. Marklof, Nonlinearity 2019; goes back to Ambrose and Kakutani’s work in the 1940’s
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Palm inversion theorem

Theorem 3: Assume ξ is a simple, stationary point pro-
cess on R with positive finite intensity. Let η be a point
process distributed according toQξ. Then P(ξ ∈ · | ξ 6=
0) is uniquely determined by η, and, for any measurable
f : N (R)→ R≥0,

E[f(ξ)1(ξ 6= 0)] = Iξ E
∫ τ1(η)

0
f(θuη)du.

• Note that the theorem yields for f ≡ 1 the relation E1(ξ 6= 0) = IξEτ1(η).
• Furthermore the choice f(ζ) = 1(τ1(ζ) > R) yields. . .
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Palm-Khinchin equations

• Furthermore the choice f(ζ) = 1(τ1(ζ) > R) yields

P(τ1(ξ) > R | ξ 6= 0) =
1

Eτ1(η)
E
∫ τ1(η)

0
1(τ1(η)− u > R)du

=
1

Eτ1(η)
E
∫ ∞

0
1(τ1(η) > R+ u)du

and so

P(τ1(ξ) > R | ξ 6= 0) =
1

Eτ1(η)

∫ ∞
R

P(τ1(η) > u)du.

• Does this look familiar?

Exercise 8: Prove analogous relations for τj(ξ), j > 1.
(These are known as Palm-Khinchin equations.)
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Convergence

Theorem 4: Let (ξT ) be a sequence of stationary point
processes on R with 0 < IξT < ∞, and ηT a point pro-
cess given by the Palm distribution of ξT . Then any two
of the following statements imply the third:

(i) IξT → Iξ;

(ii) ξT
d−→ ξ;

(iii) ηT
d−→ η, where η has distribution Qξ.

• In fact also holds in more general form for non-stationary processes∗

• This in particular implies that the convergence of the void statistics implies
the convergence of the gap statistics and vice versa (can also be proved
directly), and in the context of dynamical systems that the convergence of
the hitting time process implies the convergence of the return time process
and vice versa†

∗O. Kallenberg, Zeitsch. Wahrsch. Theo. Verw. Geb. 1973
†N. Haydn, Y. Lacroix, S. Vaienti, Ann. Probab. 2005; R. Zweimüller, Israel Math J. 2016; J.
Marklof, Nonlinearity 2017
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The stationarity trick

• Issue: ξT =
∞∑
n=1

δan−t is not a stationary point process; we assume here t

is uniformly distributed in [0, T ]

• Consider instead ξ̃T =
∑
m∈Z

∞∑
n=1

1(0 ≤ an < T ) δan+Tm−t

Exercise 9:
(i) Show ξ̃T is a stationary point process.
(ii) Show that ξ̃T

d−→ ξ if and only if ξT
d−→ ξ.

• ξ̃T in fact arises naturally in the fine-scale statistics of sequences modulo
one; more on that later
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Case study 1: Hitting and return times for linear flows on flat tori
Based on J. Marklof, A. Strömbergsson, Annals Math. 2010
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Linear flows on flat tori

• Td = Rd/Zd the standard d-dimensional torus

• (q, v) ∈ Td × Sd−1
1 = phase space of position and velocity

• Linear flow ϕt(q, v) = (q + tv, v); preserves Lebesgue measure

• If the coefficients of v are linearly independent over Q then for any f ∈ C(Td)

lim
T→∞

1

T

∫ T
0
f(ϕt(q, v))dt =

∫
Td
f(x, v)dx

(Kronnecker-Weyl theorem)

• Similar statement for all v but equidistribution on rational embedded subtori
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Hitting and return times

• D ⊂ Rd−1 bounded Borel set with boundary of measure zero. Embed in Rd

as {0} ×D; will abbreviate this as D ⊂ Rd

• Assume D has diameter < 1; this ensures that (D + ZdR) ∩D = ∅ for all
R ∈ SO(d).
• Fix any piecewise smooth map K : Sd−1

1 → SO(d) so that
vK(v) = e1 = (1,0, . . . ,0)

For example, we may choose K as K(e1) = I, K(−e1) = −I and

K(v) = E
(
−

2 arcsin
(
||v − e1||/2

)
||v⊥||

v⊥

)
for v ∈ Sd−1

1 \{e1,−e1},

where v⊥ := (v2, . . . , vd) ∈ Rd−1 and E(w) = exp

(
0 w
− tw 0

)
∈

SO(d). Then K is smooth when restricted to Sd−1
1 \{−e1}.
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Hitting and return times

• Define the section Y = {(q, v) | q ∈ DK(v)−1, v ∈ Sd−1
1 } ⊂ X; note Y is

a transversal section for the flow ϕt

• The sequence of hitting times (tj(q, v))j is given by the set

{t ∈ R | q + tv ∈ DK(v)−1 + Zd}

• Define the cylinder Z(D) = R×D = {(t, y) | t ∈ R, y ∈ D}.
• Let π1 denote the orthogonal projection π1 : Rd → R, x 7→ e1 · x.

Exercise 10: Show that the sequence of hitting times
(tj(q, v))j is given by the set∗

π1

(
Z(−D) ∩

[
(Zd − q)K(v)

])
.

∗This is in fact a cut-and-project set/Euclidean model set known from the construction of “qua-
sicrystals”
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Hitting times for shrinking sections

• Now fix D ⊂ Rd−1 an open bounded Borel set with boundary of measure
zero, and consider the shrinking sections Dr = rD with r → 0.
• Does the sequence of hitting times (t(r)j (q, v))j for the section Dr = rD

converge to a limit process, for (q, v) suitably random?

Exercise 11: Let q ∈ D. Show that (t(r)j (q, v))j is given
by the set

r1−d π1

(
Z(−D) ∩

[
(Zd − q)K(v)A(r)

])

with A(r) = diag(rd−1, r−1, . . . , r−1) ∈ SL(d,R).
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Return times for shrinking sections

• Note that for q = rbK(v)−1 with b ∈ {0}×D parametrising the section, we
have (Zd − q)K(v)A(r) = ZdK(v)A(r)− b

• So in this case (t(r)j (q, v))j is given by

r1−d π1

(
Z(−D + b) ∩

[
ZdK(v)A(r)

])
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The space of lattices

• G0 = SL(d,R), Γ0 = SL(d,Z).

• The map Γ0M 7→ ZdM gives a one-to-one correspondence between the
homogeneous space Γ0\G0 and the space of Euclidean lattices in Rd of
covolume one.

• The Haar measure µ0 on G0 is normalized so that it gives a probability mea-
sure on Γ0\G0; also denote by µ0
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The space of affine lattices

• G = G0 n Rd the semidirect product with multiplication law

(M, z)(M ′, z′) = (MM ′, zM ′+ z′)

• Define action of g = (M, z) ∈ G on Rd by yg = yM + z.

• Γ = Γ0 n Zd is a lattice in G.

• The Haar measure onG is µ = µ0×Leb (the Lebesgue measure normalised
so that Leb[0,1]d = 1); corresponding probability measure on Γ\G also
denoted by µ.

• We embed G0 in G via M 7→ (M,0).

• We embed X0 in X via Γ0M 7→ Γ(M,0).
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Equidistribution

Theorem 5∗: For f : X → R bounded continuous, λ ab-
solutely continuous Borel probability measure on Sd−1

1 ,
and r → 0,∫

Sd−1
1

f(Γ(1, q)K(v)A(r))λ(dv)→

νf if q /∈ Qd

ν0f if q = 0

• Let us think of v ∈ Sd−1
1 as a random variable with distribution λ, and define

the random element xr,q = Γ(1, q)K(v)A(r) ∈ X.
• Then the theorem can be restated as

xr,q
d−→

x if q /∈ Qd

x0 if q = 0

where x and x0 are random elements with distribution ν and ν0, respectively.

∗Follows from Ratner’s measure classification theorem
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Random lattices as point processes

Theorem 6: The map

ι : X →M(Rd), x 7→
∑

y∈Zdx
δy.

is a topological embedding.∗

• The key point we need from this statement is the continuity of ι, which is
proved as follows: We need to show that, for every f ∈ Cc(Rd), xj → x in X
implies ι(xj)f → ι(x)f . By the Γ-equivariance of ι, it is sufficient to show
that gj → g in G implies

∑
y∈Zdgj

f(y) →
∑

y∈Zdg
f(y). Let A be the compact

support of f . Since gj → g, the closure of A′ = ∪j(Ag−1
j ) is compact.

Hence Zd ∩ A′ is finite. For a ∈ Zd \ A′ we have f(agj) = f(ag) = 0, and
for the finitely many a ∈ Zd ∩A′ we have f(agj)→ f(ag). QED

∗That is, ι is a continuous injection which gives a homeomorphism X → ι(X), where ι(X) ⊂
M(Rd) is equipped with the subspace topology. See J. Marklof, I. Vinogradov, Geom. Dedicata
2017 for a full proof of the theorem.
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Random lattices as point processes

Theorem 6: The map

ι : X →M(Rd), x 7→
∑

y∈Zdx
δy.

is a topological embedding.∗

• The continuous mapping theorem will allow us now to convergence state-
ments on X,X0 to limit theorems for the corresponding point processes:

ι(xr,q)
d−→

ι(x) if q /∈ Qd

ι(x0) if q = 0

• This yields in particular the desired limit theorem for the hitting an return
times. . .

∗That is, ι is a continuous injection which gives a homeomorphism X → ι(X), where ι(X) ⊂
M(Rd) is equipped with the subspace topology. See J. Marklof, I. Vinogradov, Geom. Dedicata
2017 for a full proof of the theorem.
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Siegel’s formula

• For any Borel measurable f : R→ R≥0∫
X0

( ∑
y∈Zdx̃

f(y)

)
ν0(dx̃) = f(0) +

∫
Rd
f(y) dy

• We can restate this as a formula for the intensity measure of the point process
ι(x0):

Eι(x0) = δ0 + Leb

Exercise 12: Show that the point process ι(x) is station-
ary and its intensity measure is Eι(x) = Leb.

• The point process ι(x0) is in fact distributed according to the Palm distribu-
tion of ι(x)
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Limit theorem for hitting/return times for shrinking target

Theorem 7∗: (i) For q /∈ Q∑
j

δ
rd−1t

(r)
j (q,v)

d−→ ξ =
∑

y∈Z(−D)∩Zdx
δπ1(y)

with random x ∈ X with distribution ν.
(ii) For q = rbK(v)−1

∑
j

δ
rd−1t

(r)
j (q,v)

d−→ ηb =
∑

y∈Z(−D+b)∩Zdx0

δπ1(y).

with random x0 ∈ X0 with distribution ν0.

∗J. Marklof, A. Strömbergsson, Annals Math 2010 [in dimension d = 2 Boca, Zaharescu (Comm.
Math. Phys. 2007) proved convergence of first hitting time rd−1t(r)j (q, v) including explicit for-
mula for limit distribution; see also P. Dahlqvist, Nonlinearity 1997]
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Proof:

• We can write Ξ ∈ N (Rd) as Ξ =
∑
j

δTj(Ξ) with Tj : N (Rd)→ Rd.

• Note that the map
κD : N (Rd)→ N (R)

∑
j

δTj(ξ) 7→
∑
j

1(Tj(Ξ) ∈ Z(−D)) δπ1(Tj(Ξ))

is continuous outside the closed subset

S = {Ξ ∈ N (Rd) | Ξ(∂Z(−D)) ≥ 1}.

• We have

ι(x)S ≤ E1
(

Ξ(∂Z(−D)) ≥ 1

)
≤ E

(
Ξ(∂Z(−D))

)
= Leb(∂Z(−D)) = 0.

and similalrly

ι(x0)S ≤ δ0(∂Z(−D + b)) + Leb(∂Z(−D + b)) = 0.

We have used here that b ∈ D and hence 0 ∈ Z(−D + b). So 0 /∈ ∂Z(−D + b) since D
is assumed open.

• Now apply continuous mapping theorem.
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Limit theorem for hitting/return times for shrinking target

• It follows from the stationarity of ι(x) that ξ is stationary.

Theorem 8∗: Assume b is uniformly distributed in D and
let η = ηb be the corresponding point process. Then η
is distributed according to the Palm distribution Qξ.

P(τ1(η) > R)

d = 3, D = Bd−1
1

P(τ1(η0) > R)

d = 3, D = Bd−1
1

• Tail asymptotics† −
dP(τ1(η) > R)

dR
∼
Ad
R3

with Ad =
22−d

d(d+ 1)ζ(d)

∗J. Marklof, A. Strömbergsson, Annals Math 2010
†J. Marklof, A. Strömbergsson, GAFA 2011
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Case study 2: Fractional parts of
√
n

Based on: N. Elkies, C. McMullen, Duke. Math. J. 2004∗

∗See also: J. Marklof, Distribution modulo one and Ratner’s theorem, Equidistribution in Number
Theory, An Introduction, Springer 2007
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Triangular arrays

• Consider the triangular array

α11
α21 α22... ... . . .
αN1 αN2 . . . αNN... ... . . .

with αNn ∈ [0,1) such that αNn ≤ αN,n+1

• We say (αNn) is uniformly distributed mod 1 if for 0 ≤ a < b ≤ 1

lim
N→∞

#{n ≤ N : αNn ∈ [a, b] + Z}
N

= b− a.

• Want to study fine-scale statistics of such triangular arrays mod 1
• Example: Take αNn to be the fractional parts of (nβ)Nn=1, with 0 < β < 1

fixed.
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Fractional parts of small powers

• For fixed 0 < β < 1, β 6=
1

2
, the gap and

two-point statistics of nβ mod 1 look Pois-

son numerically—-NO PROOFS! β =
1

3
→

• For β =
1

2
, Elkies & McMullen (Duke Math

J 2004) have shown that the gap distribu-
tion exists, and derived an explicit formula
which is clearly different from the exponen-
tial. Their proof uses Ratner’s measure clas-
sification theorem!
• At the same time, the two-point function con-

verges to the Poisson answer (with El Baz &
Vinogradov, Proc AMS 2015). The proof re-
quires upper bounds for the equidistribution
of certain unipotent flows with respect to un-
bounded test functions.
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Sequence of sequences

• To connect with our previous setting, define for each N the sequence

−∞← . . . ≤ aN,−1 ≤ aN,0 < 0 ≤ aN1 ≤ aN2 ≤ · · · → ∞

given by

aN,n+Nm = NαNn+Nm, n = 1, . . . , N, m ∈ Z.

• Previously we dealt with a fixed sequence (an) of non-negative elements,
now it is (aNn), a sequence∗ of bi-infinite sequences†—no problem!
(Recall the stationarity trick)

∗indexed by N ∈ N
†indexed by n ∈ Z
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Point processes

• Fix as before σ a locally finite Borel measure on R≥0 so that σ[0,∞) =∞.

• We are interested in the sequence of point processes (cf. “randomisation”
slide)

ξN =
∑
n∈Z

δaNn−t

• Here t is a random variable distributed on [0, N) with respect to σ; that is t

is defined by P(t ∈ B) =
σ(B ∩ [0, N))

[0, N)
for any Borel set B ⊂ R.

• Note that if σ = Leb, then ξN is stationary.

• If σ =
∑
n∈Z

δaNn then ξN is cycle stationary (and distributed according to the

Palm distribution of the previous example).
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Fractional parts of
√
n

• Take αNn to be the fractional parts of (
√
n)Nn=1

• The sequence (aNn − t)n is then given by the ordered set (put t = Ns)

PN,s = {N(
√
n+m− s)) | n = 1, . . . , N, m ∈ Z}

• “Lift” this to the following point set in R2:

QN,s =

{(
n1/2

N1/2
, N

(
n1/2 +m− s

)) ∣∣∣∣∣ (m,n) ∈ Z2, n > 0

}

and note that PN,s = π2

[
QN,s ∩

(
(0,1]× R

)]
(cut and project!).

• Here is another point set in R2:

Q̃N,s =

{(
m+ s

N1/2
,−
N1/2(n+ 2ms+ s2)

2N−1/2(m+ s)

) ∣∣∣∣∣ (m,n) ∈ Z2
}

• QN,s and Q̃N,s are close (in the right half plane) . . .
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The key observation

• Fix any compact set A ⊂ R>0 × R. Then for any element in QN,s ∩ A we
have n1/2 = −m+ s+OA(N−1), so(

n1/2

N1/2
, N

(
n1/2 +m− s

))

=

(
n1/2

N1/2
,
N
(
n− (−m+ s)2

)
n1/2 −m+ s

)

=

(
−m+ s

N1/2
+OA(N−3/2),

N1/2
(
n− (−m+ s)2

)
2N−1/2(−m+ s) +OA(N−3/2)

)

• Now shift n by m2 (this 1:1 on Z) and then replace (m,n) by −(m,n). This
shows that each element in QN,t ∩ A is O(N−3/2)-close to a unique point
in

Q̃N,t =

{(
m+ s

N1/2
,−
N1/2(n+ 2ms+ s2)

2N−1/2(m+ s)

) ∣∣∣∣∣ (m,n) ∈ Z2
}
.
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The key observation

Exercise 13: Show that

Q̃N,s =

{(
y1,−

y2

2y1

) ∣∣∣∣∣ (y1, y2) ∈ Z2P (s)A(N−1/2)

}
where

P (s) =

((
1 2s
0 1

)
, (s, s2)

)
, A(r) =

(
r 0
0 r−1

)
.

• Check that P (s) generates a one-parameter subgroup of ASL(2,R).
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Equidistribution

Theorem 9∗: For f : X → R bounded continuous, λ ab-
solutely continuous Borel probability measure on [0,1],
and r → 0, ∫ 1

0
f(ΓP (s)A(r))λ(ds)→ νf.

• By the same strategy as in the previous section this implies. . .

∗Follows from Ratner’s measure classification theorem; for an effective proof see T. Browning,
I. Vonogradov, J. LMS 2016, building on the crucial work by A. Strömbergsson, Duke Math. J.
2015
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Limit theorem for the
√
n process

Theorem 10: Let t be a unformly distributed random vari-
able in [0, T ). Then

ξN = δaNn−t
d−→ ξ =

∑
(y1,y2)∈Zdx
y1∈(0,1]

δ−y2/2y1

with random x ∈ X with distribution ν, and for the corre-
sponding Palm distributed processes

ηN =
d−→ η =

∑
(y1,y2)∈Zdx0+(b,0)

y1∈(0,1]

δ−y2/2y1

with random x0 ∈ X0 with distribution ν0, and b uni-
formly distributed in (0,1].
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On the home straight, a slightly different perspective on
√
n mod 1. . .
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Square-roots and lattice points

Lattice points in a Euclidean lattice vs. P =

{(√
n

π
cos

(
2π
√
n
)
,

√
n

π
sin
(
2π
√
n
)) ∣∣∣∣n ∈ N

}
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Square-roots and lattice points

The statistics of
√
n mod 1 is equivalent to the directional statistics of the point

set

P =

{(√
n

π
cos

(
2π
√
n
)
,

√
n

π
sin

(
2π
√
n
)) ∣∣∣∣∣n ∈ N

}
To understand the directional statistics of a point set, we need to rotate and dilate

k(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, D(T ) =

(
T−1/2 0

0 T1/2

)
which yields

Pk(θ)D(T ) =

{(√
n

πT
cos(2π

√
n− θ),

√
Tn

π
sin(2π

√
n− θ)

) ∣∣∣∣∣n ∈ N
}
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Square-roots and lattice points

The point sets P and Pk(θ)D(T ) with T = 4 and θ = 0.7.
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Square-roots and lattice points

The approximation of Pk(θ)D(T ) by an affine lattice in fixed bounded subsets
of the right halfplane.
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Square-roots and lattice points

The approximation of Pk(θ)D(T ) by an affine lattice in fixed bounded subsets
of the left halfplane.
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Further reading

• Gap distributions for sequences mod 1: J. Marklof, Distribution modulo one
and Ratner’s theorem, Equidistribution in Number Theory, An Introduction,
eds. A. Granville and Z. Rudnick, Springer 2007, pp. 217-244.
• Linear flows and much more: J. Marklof and A. Strömbergsson, The distribu-

tion of free path lengths in the periodic Lorentz gas and related lattice point
problems, Annals of Mathematics 172 (2010) 1949-2033
• For Palm distribution and dynamics: J. Marklof, Entry and return times for

semi-flows, Nonlinearity 30 (2017) 810-824.
• Return maps for the horocyle flow: J. Athreya and Y. Cheung, A Poincaré

section for the horocycle flow on the space of lattices. Int. Math. Res. Not.
IMRN 2014, 2643-2690.
• (What we did not have time for) Hyperbolic lattice points: J. Marklof and I.

Vinogradov, Directions in hyperbolic lattices, Journal für die Reine und Ange-
wandte Mathematik 740 (2018) 161-186
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